Science Club | Biomaterials and Bioinks in 3D Printing for Hard Tissue Regeneration

Learn more about this timely collaboration between Swiss and Korean researchers to explore regenerative medicine through the 3D biofabrication and biomaterials.

This month's speakers

“Biomaterials and Bioinks in 3D Printing for Hard Tissue Regeneration”

Abstract: Oral and maxillofacial bone defects caused by trauma, tumors, and malformations are commonly presented for treatment in clinical scenarios. Such defects can cause physiological and psychological afflictions to patients. With the complexities underlying bone defects, bone architectures, and unique functions associated with affected bones, available effective reconstructive possibilities remain elusive and challenging to develop for clinically based treatments. Ultimately, oral and maxillofacial bone reconstruction goals include imitating and reconstructing original anatomical features, and providing desirable long-term function and aesthetic. the development of materials and fabrication process.

In this respect, three-dimensional (3D) printing customized and biofunctional components (e.g. extracellular matrix (ECM), cells and growth factors) for creating bio-active scaffolds is a promising approach for tissue regeneration. The challenge in 3D printing for regenerative medicine is the selection of biomaterials and their formulation which must not only generate a cell-friendly environment but also meet the requirements for biomechanical property and printability. For example, the ECM of bone tissue consists of organic collagen and inorganic bone mineral hierarchically organized across multiple length scales. Various biomaterials have been explored as a synthetic bone substitute. However, most strategies have focused primarily on the use of biomaterials mimicking the chemical composition of bone and considering its structural performance. Great challenges remain in the complex construct, lack of biological activity, unmanaged pore characteristics, and poor mechanical properties. Therefore, the design and fabrication of biocompatible and biodegradable living substitute with stem cells mimicking the complex architecture of native tissue remain a critical challenge.

The Medical Additive Manufacturing (MAM) research group in University Hospital Basel is composed of experienced clinicians and researchers with 3D printing technology, we mainly focus on developing biomaterials which are suitable for 3D printing in oral and maxillofacial reconstruction. In particular, we propose to use the 3D biofabrication technology and innovative bio-inks with stem cells developed by Korean partners to achieve personalized and bioactive scaffold. As our first collaboration outcome, we 3D printed polymer composite and tricalcium phosphate as the bone repair scaffold and loaded with human dental pulp stem cells. In this way, we expect to create a living scaffold to promote osteogenic differentiation.

The goal of this in-depth collaboration is to initiate a long-term partnership on research and development of advanced solutions for regenerative medicine through the 3D biofabrication and biomaterials and to fabricate patient-specific artificial substitutes. We anticipate that the further outcomes of this project will be converted into commercial medical products and offer new possibilities for daily clinical treatments in the future.